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I. INTRODUCTION 

 
I.1.  What are Radio Waves? 
 
Radio waves are low-energy electromagnetic waves that travel at the speed of light, 
or 186,000 miles per second in vacuum (3x108 meters per second).  In fact, radio 
waves posses the lowest energy of all other electromagnetic waves with energies 
less than 10-6 eV and wavelengths longer than one meter (and up to several 
kilometers).  The radio part of the spectrum can be divided into frequency (or    
 

 
Figure 1 Electromagnetic Spectrum 

 
wavelength) bands that help to categorize them for different applications not only 
in radio astronomy, but for cell phone technology, satellite TV, AM/FM radio, and 
other areas.  The following table lists these radio bands: 

 
Band Frequency (GHz) Wavelength (cm) 
L 1 – 2 30 – 15 
S 2 – 4 15 – 7.5 
C 4 – 8 7.5 – 3.75 
X 8 – 12 3.75 – 2.5 
Ku 12 – 18 2.5 – 1.67 
K 18 – 27 1.67 – 1.11 
Ka 27 – 40 1.11 – 0.75 
V 40 – 75  
W 75 – 110  

Table 1 Radio Bands 
 
Classically, radio waves are generated by disturbances in the motion of 

electrons.  When an electron experiences an acceleration, its electric field, Eθ, in the 
direction parallel to its motion will be altered [Hey, 11]: 
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where εo is the permittivity of free space, 8.85x10-12 C2 / N·m2, e is the magnitude of 
the charge of the electron, 1.6x10-19 C, c is the speed of light, ( )tυ& is the 
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acceleration (or deceleration) of the electron, θ is the angle between the direction of 
r and ( )tυ& , ω is the oscillation frequency of the electron, t is time, λ is the 
wavelength of the altered electric field (the radio wave), and r is the distance from 
the electron to where the radio wave is detected (source to observer).  This is not the 
distance, however, at the time the wave is observed, but the distance at some earlier 
time, the retarded time, when the radiation field was produced.  Since radio waves 
travel with speed c, it takes them a time t – tr = Δt = Δr/c to travel Δr [Griffiths, 
460].   

Objects that emit radio waves can be further narrowed into two categories: 
thermal and nonthermal sources.  Thermal radiation is the radiation emitted from 
an object due to its temperature, and the process by which it is radiated is obtained 
from the quantum mechanical picture of electron transitions within atoms, although   
the classical picture agrees with this at lower frequencies.  A perfect blackbody 
source, a type of thermal source, absorbs all radiation that falls on it.  Because it 
reflects no light, the radiation it emits is due entirely to its temperature.  Nonthermal 
radiation is far more intense than thermal radiation at long wavelengths and has a 
completely different spectrum, as shown in Figure 2.  The main process by which 
nonthermal radiation is emitted is called synchrotron emission.  Synchrotron  
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Figure 2 Thermal and Nonthermal Spectra 

 
radiation is due to the acceleration of electrons moving in circular motion, which of 
course is the motion created when electrons (or any charged particle) move through 
the influence of a magnetic field.  This process is responsible for the enormous 
amount of power that many astronomical objects emit at radio frequencies [Hey, 
20].   

One type of thermal source that we try to detect in this experiment is the cosmic 
microwave background (CMB) radiation, an almost completely isotropic source of 
microwave radiation that permeates the entire universe, giving evidence for the Big 
Bang theory.   The early universe was a very hot and dense plasma composed of 
quarks and gluons.  This plasma was so dense that electrons moved freely, they 
were not bound to atoms like they are today. Also, the early universe was opaque; 
the mean free path of photons was very short because there were so many free 
electrons to scatter them.  As the universe expanded, it cooled and reached a certain 
temperature where electrons could combine with nuclei to form atoms.  At this 
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point, the universe became transparent.  As the universe has continued to expand, 
the photons from that opaque plasma have redshifted and cooled to a temperature of 
2.725 K, which is the temperature the CMB is today.   

The goal of the experiment described in this paper is to try to get as close as 
possible to the accepted experimental value of TCMB = 2.725 K.  Before getting to 
that point, however, this paper will give the necessary theoretical background for 
understanding radio telescopes, various antenna parameters, sources of noise, and 
blackbody radiation.  Furthermore, a description of the experimental set-up, the 
components of the system, and the procedure are given to assist in the 
reproducibility of this experiment (or related experiments).  After the procedure, the 
data and analysis is shown for two different data runs: the scan of the galactic disk 
out of the antenna’s field of view and the angular scan of the sky. 
 

II. THEORETICAL BACKGROUND 
 
II.1.  Antenna Theory 
 
A common type of radio telescope, and the one used in this experiment, is the 
parabolic reflector.  As you can see from Figure 3, our dish, and many dishes of 
this sort, have a wire mesh surface used for directing the radio waves into the feed 
horn.  As long as the holes in the wire mesh are much smaller than the length of the  

 
  Figure 3 10 ft. Diameter Parabolic Reflector 
 
radio waves, the holes have no affect on the reflecting power of the telescope.   
 Once the waves bounce off the wire mesh, they are reflected toward the feed horn, 
which sits at the focus of the dish.  In general, the feed horn collects the 
electromagnetic radiation and passes it to an amplifier and a detector and then to 
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some type of output measuring device.  These devices are connected either by 
coaxial cables or waveguides.  Specifically, the feed horn in this experiment, as 
with almost all home satellite equipment, contains an LNB (Low-Noise Block 
downconverter).  The LNB converts a whole band or block of frequencies to a 
similar band at a lower frequency, called the intermediate frequency, IF.  This is 
done by means of a local oscillator and a mixer; the incoming signal frequency  
from the feedhorn, ωS, is combined with a signal frequency from the local 
oscillator, ωLO, and sent into the mixer, which outputs a beat at the intermediate 
frequency, ωIF = │ωS - ωLO│ [Tucker, Feldman, 1061].  Thus, the mixer is designed 
to reproduce the original signal at the desired IF with the smallest amount of loss 
and the smallest amount of added noise as possible (block diagram in Figure 4).  In 
this experiment, ωLO = 5150 MHz, and ωIF = 950 – 1450 MHz.   
 

 
Figure 4 Block Diagram of an LNB 

 
Noise is quantified in two different, yet equivalent, ways depending on what 

band of frequencies you are considering.  C-band LNBs use a quantity known as 
noise temperature, measured in degrees Kelvin (K), to measure the amount of 
noise in the system.  On the other hand, Ku-band LNBs measure noise as a noise 
figure, expressed in decibels (dB) [Long, 3].  The noise temperature of the LNB 
used in this experiment is 57 K (see section II.2. below).   

  
 II.2.  Sources of Noise 
 

Noise is an inherent part of all electrical and electronic systems.  As Figure 4 
shows, not only does the IF frequency get amplified, but any noise from the mixer 
and local oscillator will also be sent through the IF amplifier.  It is important to 
understand the sources of noise when working with any type of receiving system, 
since the noise that is received can be either desirable or undesirable.  Thus, we 
must understand more about the antenna and how radiation is spread across its 
surface area. 

The antenna picks up signals (or noise) from many different sources; even when 
it is pointed directly upward at the sky, the antenna receives signals from the 
atmosphere, the ground, the galactic disk, the CMB, and any other types of radio 
interference such as airplanes and automobiles.  These sources all create noise 
temperatures and the total noise temperature of the system is measured in units of 
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antenna temperature, TA, and is the sum from all contributions [De Amici, Smoot, 
et al., 556]: 

  
 (II.1)          TA = TA,atm + TA,ground + TA,galaxy + TA,CMB  
 

where TA,atm is the antenna temperature of the atmosphere, TA,ground is the antenna 
temperature of the ground, and so on.  Furthermore, the antenna temperature for a 
blackbody at a temperature T covering the antenna aperture is given by [De 
Amici, Smoot, et al., 556]: 
 

(II.2)          
ν

ν
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TT =
-1e

 

 
where Tν = hν / k = 0.226 K at 4.7 GHz, h is Planck’s constant, ν is frequency, 
and k is Boltzmann’s constant. 
 
II.3.  Antenna Parameters 
 
From the previous section we know that everything that has a temperature emits 
radiation and thus, introduces noise into our receiving system.  But the amount of 
noise that enters depends on many factors: antenna design, the direction the 
antenna is pointed, the antenna’s beamwidth, the effective area of the aperture, 
and the gain.   

When a radio telescope is aimed directly at a radio source, it gives the maximum 
signal; as the source moves away, or the telescope moves slightly away from the 
source, it still receives some of the signal.  A good radio telescope will show a 
signal strength drop to zero very quickly as it moves away from a radio source, 
which is to say the telescope has a narrow beamwidth.  An ideal radio telescope 
gives the most narrow beamwidth with the highest resolving power.  By 
definition, the beamwidth of a radio telescope is the angle between the directions 
corresponding to half the maximum power (also called the half power beam 
width, HPBW).  For circular aperture antennas, the beamwidth θ is given by 
[Rohlfs, 76]: 

  

 (II.3)          58.4
D
λθ = o  

 
where λ is the wavelength of the incoming radiation and D is the diameter of the 
aperture.  For example, the dish used in this experiment has a diameter of 10 feet, 
or 3.05 meters, and is used at a wavelength of 6.38 cm (4.7 GHz).  So, this system 
has a beamwidth θ = 1.22°.  Figure 5 is a polar plot showing the dependence of 
direction on the receiver’s sensitivity to receive power from the main lobe.  The 
main lobe is some part of intercepted signal from some larger power pattern, 
Pn(ϑ,ϕ), where ϑ and ϕ are the spherical coordinates of the power pattern.  The 
main lobe solid angle, ΩM, is given by [Rohlfs, 64]: 
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Figure 5 Polar plot of Pn(ϑ,ϕ) being intercepted by the main beam   
 

 
measured in steradians, sr.  Furthermore, the beam solid angle, ΩA, of the antenna 
can be defined as: 
 

(II.5)          
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From figure 5 we also notice the existence of sidelobes, which are, for receiving 

purposes, the undesirable parts of the power pattern.  How well the power pattern 
is concentrated in the main beam determines how much information we can know 
about the radiation source.  For example, if we are trying to observe the radiation 
from a very weak source like the CMB during the daytime, we will get a large 
amount of noise in the sidelobes due to the very strong signal from the sun.   The 
ground even adds unwanted thermal noise into the sidelobes of a receiving 
system.  However, the function of the parabolic reflector and the feed horn is to 
produce the highest efficiency of the main beam, where the beam efficiency, ηM, 
is defined as [Rohlfs, 65]: 

 

 (II.6)          M
M

A

η Ω
=
Ω

 

  
The effective area of the dish, or effective aperture, is the fraction of the dish 

that collects radio power and sends it to the feed.  This is always less than the 
geometric area of the dish because the feed horn, which sits at the focus, will 
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collect radiation better from the center than from the edge.  The effective area, Ae, 
can be defined mathematically by [Rohlfs, 66]: 
 

(II.7)          e
e

PA =
S

 

where ⏐〈S〉⏐is the power density of a plane wave being intercepted by the dish 
and Pe is the amount of power that the feed horn can extract from it.  The exact 
amount of effective area a dish has will vary from system to system; some say a 
good parabolic reflector has an effective area of 60 percent [Hey, 33], while 
others contend that most of today’s dishes have an effective area of 70 percent 
[Long, 1].  Thus, the feedhorn attenuates the signal coming from the outer 30 – 40 
percent of the dish by as much as 15 dB, acting as a shield for unwanted noise 
arising from the ground [Long, 1].   

The gain of an antenna is a measure of how well it can increase the power of a 
radio signal as compared to some standard.  Gain is measured in decibels-
isotropic (dBi) or decibel-dipole (dBd), although it is usually expressed just as dB 
since the standard that we compare this gain to is already implied.  For example, 
the dBi is a measure of the gain relative to some lossless isotropic source.  This 
isotropic source is an imaginary antenna that radiates equally in all directions, and 
has 0 dBi gain [Ramsey, 1].  The dBd is a measure of the gain relative to a dipole 
antenna, such as the Hertz dipole, whose gain is known to be (3/2)sin2ϑ.   

Gain can be calculated in different ways depending on what specific information 
is known about the system.  One way is to simply take the logarithm of the ratio 
of output power, Pout, to the input power of the signal, Pin, and multiply by 10 
[Marc, 1]: 

  

 (II.8)          10 out
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PG Log
P

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  

 
Another useful formula relates the gain of the antenna to the effective area [Hey, 
33]: 
 

(II.9)          2

4 eAG π
λ

=  

 
It is interesting to note that in the derivation of equation (II.9), thermodynamic 
equilibrium between source and receiver is assumed; but since the equation does 
not contain any thermodynamic quantities, it is always valid [Rohlfs, 68].  We can 
see from (II.9) that a bigger dish gives a bigger gain.  Also, the smaller the 
wavelength of the incoming radiation (i.e. the narrower the beamwidth), the 
higher the gain.  Thus, for achieving higher gain and narrower beamwidth, larger 
radio telescopes are better than smaller ones.   
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II.4.  Atmospheric Attenuation of Radio Waves 
 
There are two regions of the electromagnetic spectrum that are minimally affected 
by the earth’s atmosphere: the visible region and the radio region.  What this 
means is that the atmosphere is almost completely transparent to radiation passing 
through it, within a certain frequency region (Figure 6).  For the radio window, 
this frequency region is from approximately 15 MHz (λ ≅ 20 m) to about  

 
Figure 6 Influence of earth’s atmosphere on EM radiation 

 
300 GHz (λ ≅ 1 mm), but these limits can change with geographical location and 
time [Rohlfs, 3].  In this experiment, we are using a frequency of about 4.7 GHz, 
so we are safely within this range.  However, there is a small amount of 
absorption of radio waves due to moisture caused by water vapor in the 
atmosphere [Rohlfs, 165].  This absorption, although it is small, will decrease the 
amount of measured power received from a radio source.  If S(z) is the radiation 
flux (power) measured at an angle z from the zenith (straight upward, 0°), and So 
is the flux that would be obtained outside the atmosphere, then [Rohlfs, 165]: 
 
(II.10)          S(z) = So d -X(z)

 
where d is the attenuation at the zenith for an airmass of h and X(z) is the relative 
airmass in units of airmass at the zenith.  The simplest model, a flat, parallel 
atmosphere, gives 
 

(II.11)          ( ) sec
cos

hX z h z
z

= =  
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as shown in Figure 7.   
 
 
 

 
Figure 7 Flat atmospheric model 

 
However, when taking into account the curvature of the earth and the atmosphere, 
a much more complicated expression arises: 
 

(II.12)          
2

2

1 ( ) / ( )( )

1 sin
( )

R h

R
o

r RX z d
h nR z

r n r

ρ ρ+

=
⎛ ⎞

− ⎜ ⎟
⎝ ⎠

∫ r  

 
where R is the radius of the earth, ρ(r) is the gas density of the atmosphere at 
radius r, ρ(R) is the gas density at the surface of the earth, n(r) is the index of 
refraction of the atmosphere at radius r, and no is the index of refraction of the air 
at the surface of the earth.  For our purposes in the analysis section, equation 
(II.11) is used to show the increase in signal strength from the atmosphere, as you 
sweep through larger angles.  Equation (II.10) and (II.11) together are used to 
show the decrease in signal strength from a source outside of the atmosphere.  
Because the atmosphere is a weak absorber at this wavelength (λ = 6.38 cm), it is 
also a weak emitter, so we have neglected the attenuation due to the atmosphere 
in this experiment.   But it should be noted that the atmosphere can reduce signal 
strength by about 0.3 % [De Amici, Smoot, 556].  In terms of gain (or loss), the 
atmosphere can attenuate by about 0.2 dB on a clear day while large rain clouds 
may attenuate signals by up to 1.5 dB [Rohlfs, 165].   
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II.5.  Blackbody Radiation 
 
The blackbody radiation curve in Figure 2 was found theoretically by Max Planck 
in 1900 using the hypothesis that atomic energy levels are quantized, En = nhν, 
where n is a nonnegative integer, h is Planck’s constant, and ν is the oscillator 
frequency.  The Planck distribution is given by: 
 

(II.13)          
3

2 /

2 1( )
1h kT

hB T
c eν ν

π ν
=

−
 

 
where BBν(T) is the brightness or intensity with units W⋅m  ⋅Hz  ⋅sr .  The 
Planck law gives the power per area per unit frequency interval per solid angle.  
In terms of wavelength, the Planck law is 

-2 -1 -1
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If we integrate equation (II.13) over all ν, or (II.14) over all λ, the total power of 
the blackbody source is obtained: 
 

(II.15)          
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This is called the Stefan-Boltzmann law, and it shows that the total power per 
area radiated by an object is proportional to the fourth power of the temperature.  
If we differentiate equation (II.14), set it equal to zero and solve for λ, we will 
obtain the wavelength at which the power per area per unit wavelength is 
maximum; this result is known as Wien’s Law: 
 

(II.16)          
3

max
2.898 10 m K

T
λ

−×
= ⋅  

 
For the sun (T ≅ 5900K), λmax = 4.91 x 10-7 m = 491 nm.  For the CMB                 
(T ≅ 2.7K), λmax = 0.001 m.   

In this experiment, however, we are only concerned with a small interval of 
frequencies (the bandwidth of our LNB).  This means that we want to integrate 
equation (II.13) over some frequency range centered about the incoming signal 
frequency (4.7 GHz).  The bandwidth of our LNB is 1450 MHz – 950 MHz = 500 
MHz (see section II.1.), so the interval is 250 MHz below 4.7 GHz and 250 MHz 
above 4.7 GHz.  To help simplify the integration, we can approximate the 
exponential in the denominator of (II.13) as a linear function since we are only 
looking at a small interval.  This is done by taking only the first term in the power 
series expansion of the denominator: 
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 So, equation (II.13) becomes: 
 

 (II.18)          
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This is the equation we want to integrate over our frequency interval                 
(4.7 GHz – 0.25 GHz, 4.7 GHz + 0.25 GHz) = (4.45 GHz, 4.95 GHz).  However, 
we have to treat the calculation differently for the sun, a point source, and the 
atmosphere and CMB, extended sources.  For the sun, we only need to integrate 
over the frequency interval, but for the extended sources, we also need to 
integrate over the solid angle dΩ : 
 
(II.19)          
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where the upper limit on ϑ-integral is found by taking one-half of the value found 
using equation (II.3), ϑ = 1.22° / 2 = 0.61° = 0.0106 radians.  The solid angle part 
of the point source equation is taken care of when we calculate power.  Power is 
calculated differently for point sources and extended sources.  For an extended 

source, the power is simply P = 1
4π

B(T) ⋅ Area.  For a point source, however, the 

power that we receive depends on its size as well as how far away it is.  For the 
sun, the total power radiated per area (R) is 
 

22 8
11 -2 -1 -1

11

12 2

6.96 10 m( ) (3.20 10 W×m ×K sr )(5900K)
1.50 10 m

4.06 10 W/m

srR B T
d

−

−

⎛ ⎞×⎛ ⎞= = × × ⎜ ⎟⎜ ⎟ ×⎝ ⎠ ⎝ ⎠
= ×

 

 
where d is the approximate distance from the earth to the sun and rs is the radius 
of the sun.  So, the power of the sun is now calculated as P = R ⋅ Area.   

The diameter of the dish is 10 feet = 3.05 m, so the radius is r = 1.52 m.  The 
area, then, is Area = π ⋅ r2 = 7.26 m2.  Since the effective area of the dish is 
approximately 65%, the total power will be reduced by this amount.  Thus, for the 
CMB, the atmosphere, and the sun, the total effective power intercepted by the 
antenna is: 
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4
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= ⋅ ⋅ ⋅ = × ⋅ =

= ⋅ ⋅ ⋅ = × ⋅ =

= ⋅ ⋅ = × ⋅ =

-15

-13

-11

3.84×10 W

4.09×10 W

1.92×10 W
 
In addition, because equation (II.19) is a relation between intensity and 
temperature, it follows that: 
 

CMB CMB CMB CMB

atm atm atm atm

B T P T
B T P T

∝ ⇒ ∝
∝ ⇒ ∝

 

 
Taking the ratio, we get: 
 

CMB CMB

atm atm

P T
P T

=  

 
Thus, we obtain a way to calculate the temperature of the CMB based on 
measurable quantities: 
 

(II.20)          CMB
CMB atm

atm

PT T
P

=  
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III. EXPERIMENTAL SET –UP AND PROCEDURE 
 

III.1.  Components of the System 
 
Figure 8 shows the block diagram of the system used in this experiment. 
 

 
Figure 8 Block diagram of our system arrangement  

 
 
The LNB is a commercial C-band, low-noise block downconverter.  It takes an 
incoming signal at 4.7 GHz, mixes it with a local oscillator frequency of 5.15 
GHz, and produces an intermediate frequency between 950 – 1450 MHz, which is 
then amplified by 30 dB.      

The amplified IF signal then travels through coaxial cable to a commercial 
satellite finder, which is the detector used in this experiment.  The satellite finder 
has a signal meter and a sensitivity adjustment on the front panel; its purpose is 
simply to let you know when your antenna is pointed at a radiating source.  
Because it has a built-in amplifier, the satellite finder acts as a second stage of 
amplification.  It also has a diode, so that the oscillating radio frequency signal 
gets converted to a DC output, which is what the signal meter uses to measure the 
signal strength.  The receiver has only two functions in this experiment: it is a 
power supply for the LNB as well as the power and control system for the 
external motor drive that moves the dish.   

The A/D converter is a 4-channel, 10-bit data acquisition device that connects 
directly into a laptop (or PC) serial port.  One of the four channels was used as our 
output, which is displayed in much the same way an oscilloscope is, giving a 
voltage/division on the vertical axis and time/division on the horizontal axis.  This 
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output is measured from the positive lead of the satellite finder signal meter, while 
the outside case of the satellite finder serves as the ground.  It was necessary to 
physically open the back of the satellite finder in order to take measurements from 
the positive lead.   

  
 III.2.  Procedure 
 

Once all the various components of the system are connected, it is time to 
calibrate it.   Calibration is a necessary part of any experiment, since it 
determines the error associated with a measurement and, if possible, allows you to 
reduce that error by applying a correction factor to future measurements.  
Depending on the type of experiment, it may be necessary to calibrate each 
component of the system, making sure that they are within the specifications set 
by the manufacturer.  However, in this experiment, the individual components 
were assumed to operate within manufacturer specifications.  The calibration in 
this experiment only involves correlating the power from a known source to the 
output voltage of that source, the output voltage being obtained from the A/D 
converter.   

One of the set-backs of this system, a set-back which made it very difficult to 
calibrate, has to do with the sensitivity adjustment of the satellite finder.  The 
sensitivity adjustment limits the amount of signal that passes through its amplifier.  
For a very weak signal, it is best to have the sensitivity at, or near, its maximum 
level.  For a very strong signal, like the sun, the sensitivity should be near its 
minimum.  The problem is that there needs to be one sensitivity scale to calibrate 
measurements on, not multiple scales.  This does not mean that our experiment is 
dead, however.   

The experiment is dead if we try to make sense of any numerical values without 
calibrating the system.  Yet, if we look at differences in numerical values, the data 
still makes sense.  For example, to determine the temperature of the CMB with 
the system calibrated, we would simply scan the clear sky at different angles 
starting from the zenith, making sure no other objects are in the antenna’s field of 
view (best to do this in the evening so the radiation from the sun does not enter 
into the sidelobes).  There should be a noticeable increase in voltage as you sweep 
through larger angles (i.e. 0° → 1.1V, 10° → 2.2V, 20° → 5.1V, …).  These 
voltages correspond to temperatures (obtained from the calibration curve), and 
they increase due to the higher amounts of airmass at larger angles (given by 
equation (II.11)).   With the system un-calibrated, we should be able to see this 
increase in voltage at larger angles.  The numerical values of the voltage readings 
won’t make any sense, but the differences in the values should agree with the 
differences in the values for the calibrated system, giving us a qualitative 
understanding of how to detect the CMB.   

The procedure for detecting the CMB only showed that this system, even set to 
its maximum sensitivity, is not sensitive enough to detect it.  Even with the 
system un-calibrated, we should have seen the voltage increase, but we didn’t 
(data shown in the next section).  Furthermore, on Saturday, March 19, 2005, at 
about 6:00 pm, the galactic disk was directly overhead.  At exactly 6:00 pm that 
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evening we pointed the dish directly upward and recorded the data as the earth 
rotated passed it (out of the antenna’s field of view).  Again, our system was not 
sensitive enough to detect any change (data in the next section).  However, two 
airplanes did pass through the antenna’s field of view during that recording, 
which is very evident.   

 
IV. DATA AND ANALYSIS  

 
IV.1.  Passage of the Galactic Disk 
 

 Date: Saturday, March 19, 2005 
 Time: 6:00 pm 
  

Figure 9 shows a sample of the raw data obtained from the passage of the galactic 
disk out of the antenna’s field of view, where the antenna was pointed at zenith. 
 

 
Figure 9 Data acquired from the A/D converter 

 
Figure 9 shows about the first 60 seconds of the recording.  Figure 10 is an Excel 
plot of the entire data run (about 77 minutes).  The acquisition rate was 30 
samples/second, which should have created a data run lasting 102 minutes, but the 
data file was full at 77 minutes, causing the recording to stop.  However, even in 
the 77 minute run we should have noticed the signal strength starting to drop as 
the galactic disk was slowly moving out of the antenna’s field of view.  Aside 
from the two airplane interferences that were recorded, there is no noticeable 
decrease in the signal strength.  We do notice a few interesting dips in the signal 
strength with a magnitude almost as large as the airplane interference.  There was 
some rain that evening, which may have caused some attenuation of the signal 
from the galaxy.  However, we can not be certain of this at this time.  Even if the 
data from the airplane interference is included, it is not enough to change the 
average value and the standard deviation of the data, which were calculated in 
Excel.  The standard deviation of a set of measurements x1, …, xN is an estimate of 
the average uncertainty of those measurements [Taylor, 98], and is given by: 
 

(IV.1)          2

1
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σ
=
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where x is the mean (or average) value of the data set.   
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Figure 10 Excel plot from data run of galactic disk 

 
Because there are 34,000 data points from this run, we had Excel calculate the 
mean and the standard deviation, and we obtained: 
 

216 mV
10 mV

V
σ
=
=

 

 
Except for the two spikes from the airplanes and the uncertainty of where the dips 
came from, the baseline voltage of 216 mV did not change, which is an indication 
that there was probably not enough sensitivity to detect the radio signal from the 
galaxy.   
 
IV.2.  Angular Scan 
 
Date: Saturday, March 19, 2005 
Time: 9:30 pm 
 
Figure 11 shows a sample of the data taken from an angular scan of the night sky 
from different angles, starting from the zenith and proceeding downward (Figure 
7).   
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Figure 11 Data from the A/D converter for angular scan 

 
The acquisition rate for this scan was 240 samples/second, which produced a 
recording lasting about 40 seconds.  The angular scan should have shown an 
increase in signal strength as we moved the antenna through more airmass (larger 
angles).  But as the Excel plot in Figure 12 shows, this does not happen. 
 

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45

time (seconds)

vo
lta

ge
 (m

V
)

 
Figure 12 Excel plot from data run of angular scan 

 
This data has a mean and standard deviation of: 
 

296 mV
12 mV

V
σ
=
=

 

 
where the increase in the baseline voltage to 296 mV was caused by a slight 
increase in the sensitivity level of the satellite finder.  If the system had been 
calibrated and was sensitive enough to measure the thermal radiation due to 
thicker airmass, the analysis for determining the CMB would go as follows: 
Equation (II.11) shows us how the airmass increases with angle.  The radiation 
flux from the atmosphere will increase with increasing angle.  However, the 
radiation flux from the CMB will not vary with angle, it is an isotropic source.  
Thus, we get a function that is a combination of the CMB and the atmosphere: 
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(IV.2)          ( ) secCMB atmf z P P= + z  
 

 
Figure 13 Graphical interpretation of equation (IV.2) 

 
Subtracting the portion due to the atmosphere, we obtain the flux due to the CMB, 
which is correlated to a temperature, when the system is calibrated.  Equation 
(II.20) in section II.5. is the relevant equation for the temperature of the CMB.  It 
should be noted that the PCMB term in equation (II.20) and (IV.2) will also contain 
any power due to noise in the system, Pnoise.  Although we have not made a 
numerical determination of TCMB here (due to the system being un-calibrated), it is 
likely that we may have only been able to determine the temperature of our 
system, where Tsystem = TCMB + Tnoise.  Yet, since we know that the noise 
temperature of the LNB is 57 K, this is one source that we could subtract; 
however, it may not be possible to subtract all the noise in the system, which will 
add more uncertainty to our numerical figure for TCMB.   

 
V. SUMMARY AND CONCLUSIONS  

 
We have realized the limits of this particular system, but we are still left with 
some uncertainty as to how limited it actually is.  Based on our results, it seems 
that we obtained no variation in signal strength from the galaxy.  However, there 
is some uncertainty due to the cloud cover and the rain that evening.  Yet it seems 
more likely that our system was just not sensitive enough to detect the galaxy, 
which means that we would not be able to detect the CMB, since at 4.7 GHz the 
galaxy is roughly one or two orders of magnitude more intense than the CMB 
[Robinson, 19].  However, more data needs to be taken to determine if this system 
truly can, or cannot, measure the power from the galactic disk.  If it can, then 
there is still hope for measuring the CMB temperature. 

It seems, then, that we leave this experiment with a very important question: 
how can we improve the sensitivity of this system? One way will be to replace the 
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satellite finder with an amplifier and detector built specifically for our system.  
The project will be to build a wide-band IF amplifier (acting as a second source of 
IF amplification) and a detector module [Capitolo, Lonc, 8].   The output of the 
amplifier will go to the input of the detector, and the output of the detector will be 
a positive DC voltage.  Building our own detector will give us more control over 
bandwidth and gain, and will hopefully reduce some of the noise introduced by 
the second-stage of amplification (the amplifier in the satellite finder is very 
noisy).   

Overall, this experiment has given us a roadmap to pursue future projects and 
future means of detecting the CMB.  With questions and uncertainties come more 
ideas.  The foundations laid here give us something to build on, and the hope of 
better things to come. 
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